
Model Checking Legal Documents

Daniel Goŕın1 Sergio Mera1 Fernando Schapachnik1

1FormaLex Lab,
Departamento de Computación,

Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires,

Buenos Aires, Argentina

JURIX 2010

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 1

Model Checking Legal Documents

Aim

Find incoherences in (formalizations of) every-day regulations

Problems there rarelly go to court, yet affect “users”.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 2

Model Checking Legal Documents

Aim

Find incoherences in (formalizations of) every-day regulations

Problems there rarelly go to court, yet affect “users”.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 2

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Model Checking Legal Documents

Model Checking is usually conceived as the mathematical
analysis of models. These models tend to represent software
artifacts, and in particular, software specs.

Legal documents, we know: a collection of normative
propositions.

That’s specially true if we focus not on high-level, rights-giving,
general Laws, but on everyday, operational regulations.

Normative Propositions

What someone should/shouldn’t, can/can’t do.

Software Specs

What the software should/shouldn’t, can/can’t do.

They seem to be somehow similar. Are they?

Why is that important?

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 3

Why is it so important?

Because we know how to analyze software specs!

Many successful tools: model checkers, theorem provers (SAT
solvers, SMT solvers, etc.)
Scalability and expressivity are still an issue, but lots of effort
put in that direction.

So, if regulations were similar to specs we could use existing
technology.

If not, ad-hoc techniques will have to be developed, and that
takes decades!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 4

Why is it so important?

Because we know how to analyze software specs!

Many successful tools: model checkers, theorem provers (SAT
solvers, SMT solvers, etc.)

Scalability and expressivity are still an issue, but lots of effort
put in that direction.

So, if regulations were similar to specs we could use existing
technology.

If not, ad-hoc techniques will have to be developed, and that
takes decades!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 4

Why is it so important?

Because we know how to analyze software specs!

Many successful tools: model checkers, theorem provers (SAT
solvers, SMT solvers, etc.)
Scalability and expressivity are still an issue, but lots of effort
put in that direction.

So, if regulations were similar to specs we could use existing
technology.

If not, ad-hoc techniques will have to be developed, and that
takes decades!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 4

Why is it so important?

Because we know how to analyze software specs!

Many successful tools: model checkers, theorem provers (SAT
solvers, SMT solvers, etc.)
Scalability and expressivity are still an issue, but lots of effort
put in that direction.

So, if regulations were similar to specs we could use existing
technology.

If not, ad-hoc techniques will have to be developed, and that
takes decades!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 4

Why is it so important?

Because we know how to analyze software specs!

Many successful tools: model checkers, theorem provers (SAT
solvers, SMT solvers, etc.)
Scalability and expressivity are still an issue, but lots of effort
put in that direction.

So, if regulations were similar to specs we could use existing
technology.

If not, ad-hoc techniques will have to be developed, and that
takes decades!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 4

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software

Contrary-To-Duty Obligations

Specs: O(X) ∧ OY (X) = OY (X)

Regulations: O(X) ∧ OY (X) = incoherence?

Amendments to Deal with Contradictions

Regulations: F(kill) + P(kill in self-defense) =
F(kill unless self-defense)

Specs: F(kill) + P(kill in self-defense) = incoherence

Permissions

Difficult topic in DL literature, yet present in regulations.

In specs, are they much more than non-determinism?

Beware! “The user may print the displayed listing” sounds like
permission but it is an obligation (to developers) to provide
the printing option to the user.

More on permissions later on today.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 5

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (2)

Hierarchies

Regional rule: tax = $10

National rule: tax = $20

So, current tax = $20

National rule derogated afterwars.

Specs: probably, tax = $0

Regulations: tax = $10

Ontologies

Very common in regulations.

Common in code (inheritance, subclassing), not so common in
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 6

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.

If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).

Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (3)

Nesting of Deontic Operators

Eg, obligations to obligate.

“The judge is obligated to obligate the citizen to do X ”: two
obligations, two responsible parties.

The judge may issue the order to the citizen, and the citizen
fail to comply.

Do not confuse with“The system is obligated to obligate users
to do Y ”, with Y being “not access each other’s private files”.

There’s not such thing as the system issuing the order and the
users deciding not to follow it.
If the system doesn’t enforce Y, then the system is at fault (its
developers are).
Also, if users fail to do Y, then the same system is also
responsible.

This type of predicates seem to be just a complex wording for
only one obligation.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 7

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (4)

Self-Referencing Modifications

Eg, “Let Article X of Bill Y be modified to mandate that from
now on such and such”.

Very different to run-time or compile-time configurations.

Specs do not self-modify themselves...

...except for some prototype dynamic specification languages
with self-referencing capabilities...

...but they are still far from being used in the current state of
the practice.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 8

Specs vs software (5)

Deontic-Conditional Validity

Eg, “if at the time of the execution the agent were obligated
to ... then she ...”

Software specs may impose behaviours based on run-time
conditions.

But they don’t specify behaviour that is conditional to the
runtime requirements...

...if the term makes any sense at all.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 9

Specs vs software (5)

Deontic-Conditional Validity

Eg, “if at the time of the execution the agent were obligated
to ... then she ...”

Software specs may impose behaviours based on run-time
conditions.

But they don’t specify behaviour that is conditional to the
runtime requirements...

...if the term makes any sense at all.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 9

Specs vs software (5)

Deontic-Conditional Validity

Eg, “if at the time of the execution the agent were obligated
to ... then she ...”

Software specs may impose behaviours based on run-time
conditions.

But they don’t specify behaviour that is conditional to the
runtime requirements...

...if the term makes any sense at all.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 9

Specs vs software (5)

Deontic-Conditional Validity

Eg, “if at the time of the execution the agent were obligated
to ... then she ...”

Software specs may impose behaviours based on run-time
conditions.

But they don’t specify behaviour that is conditional to the
runtime requirements...

...if the term makes any sense at all.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 9

Specs vs software (5)

Deontic-Conditional Validity

Eg, “if at the time of the execution the agent were obligated
to ... then she ...”

Software specs may impose behaviours based on run-time
conditions.

But they don’t specify behaviour that is conditional to the
runtime requirements...

...if the term makes any sense at all.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 9

Specs vs software (recap)

Last three’s common denominator: considering deontic
operators as first-class operators.

They don’t seem to occur in specs.

If we only consider regulations that do not need them:

+ Still able cover an important and varied amount of regulations
that are common in the real world.

+ Can resort to tools and technologies meant to analyze software
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 10

Specs vs software (recap)

Last three’s common denominator: considering deontic
operators as first-class operators.

They don’t seem to occur in specs.

If we only consider regulations that do not need them:

+ Still able cover an important and varied amount of regulations
that are common in the real world.

+ Can resort to tools and technologies meant to analyze software
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 10

Specs vs software (recap)

Last three’s common denominator: considering deontic
operators as first-class operators.

They don’t seem to occur in specs.

If we only consider regulations that do not need them:

+ Still able cover an important and varied amount of regulations
that are common in the real world.

+ Can resort to tools and technologies meant to analyze software
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 10

Specs vs software (recap)

Last three’s common denominator: considering deontic
operators as first-class operators.

They don’t seem to occur in specs.

If we only consider regulations that do not need them:

+ Still able cover an important and varied amount of regulations
that are common in the real world.

+ Can resort to tools and technologies meant to analyze software
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 10

Specs vs software (recap)

Last three’s common denominator: considering deontic
operators as first-class operators.

They don’t seem to occur in specs.

If we only consider regulations that do not need them:

+ Still able cover an important and varied amount of regulations
that are common in the real world.

+ Can resort to tools and technologies meant to analyze software
specs.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 10

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.

Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.

If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.

If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Which existing tools?

Miriad of possible approaches with success stories in specs.

We chose LTL.

Many available, well-established model checkers: SPIN,
DiVinE, NuSMV, etc.

General approach:

Automata network describing system behaviour.
Formula to assert requirements.
If model checker answers YES, formula holds.
If it answers NO, then it outputs a counterexample trace.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 11

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.

Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.

Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.

They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.

O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ

F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ

Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)

Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Introducing the FL language

We devised a wrapper language: FL

Background theory:

Aim: reflect the “real world”.
Simple language, translates into automata.

Formulae:

To state normative propositions.
Deontic operators: O and F.
They affect the set of (legal) traces.
O(ϕ) = �ϕ
F (ϕ) = �¬ϕ
Also, repaired versions:

Oψ(ϕ) = �(¬ϕ→ ψ)
Fψ(ϕ) = �(ϕ→ ψ)

Permission is contemplated, but behaves differently (later on).

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 12

Example

Background theory:
actions SemBegins, SemEnds
interval Semester defined by actions SemBegins-SemEnds

only occurs in scope AcademicYear occurrences 2
action TakeExam outputValues {PassWithHonors, Pass, Fail}

only occurs in scope Semester

The students are obligated to take at least one exam per
academic year
O(♦AcademicYearTakeExam)

It is forbidden to fail two or more exams during a semester. If
that happens, situation can be fixed by passing with honors
some exam in that same semester

Fρ(♦Semester(TakeExam.Fail ∧ X♦SemesterTakeExam.Fail))
where ρ = ♦SemesterTakeExam.PassWithHonors

Complex property: it is permitted to fail up to n exams
counter failed increments with action TakeExam.Fail

P(failed ≤ n)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 13

Example

Background theory:
actions SemBegins, SemEnds
interval Semester defined by actions SemBegins-SemEnds

only occurs in scope AcademicYear occurrences 2
action TakeExam outputValues {PassWithHonors, Pass, Fail}

only occurs in scope Semester

The students are obligated to take at least one exam per
academic year
O(♦AcademicYearTakeExam)

It is forbidden to fail two or more exams during a semester. If
that happens, situation can be fixed by passing with honors
some exam in that same semester

Fρ(♦Semester(TakeExam.Fail ∧ X♦SemesterTakeExam.Fail))
where ρ = ♦SemesterTakeExam.PassWithHonors

Complex property: it is permitted to fail up to n exams
counter failed increments with action TakeExam.Fail

P(failed ≤ n)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 13

Example

Background theory:
actions SemBegins, SemEnds
interval Semester defined by actions SemBegins-SemEnds

only occurs in scope AcademicYear occurrences 2
action TakeExam outputValues {PassWithHonors, Pass, Fail}

only occurs in scope Semester

The students are obligated to take at least one exam per
academic year
O(♦AcademicYearTakeExam)

It is forbidden to fail two or more exams during a semester. If
that happens, situation can be fixed by passing with honors
some exam in that same semester

Fρ(♦Semester(TakeExam.Fail ∧ X♦SemesterTakeExam.Fail))
where ρ = ♦SemesterTakeExam.PassWithHonors

Complex property: it is permitted to fail up to n exams
counter failed increments with action TakeExam.Fail

P(failed ≤ n)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 13

Example

Background theory:
actions SemBegins, SemEnds
interval Semester defined by actions SemBegins-SemEnds

only occurs in scope AcademicYear occurrences 2
action TakeExam outputValues {PassWithHonors, Pass, Fail}

only occurs in scope Semester

The students are obligated to take at least one exam per
academic year
O(♦AcademicYearTakeExam)

It is forbidden to fail two or more exams during a semester. If
that happens, situation can be fixed by passing with honors
some exam in that same semester

Fρ(♦Semester(TakeExam.Fail ∧ X♦SemesterTakeExam.Fail))
where ρ = ♦SemesterTakeExam.PassWithHonors

Complex property: it is permitted to fail up to n exams
counter failed increments with action TakeExam.Fail

P(failed ≤ n)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 13

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ

Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.

2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.

3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.

4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Permissions

Permissions do not affect the set of traces.

Instead, they are interpreted as “checks” that the rest of the
rules must fulfill.

If not, then there is an incoherence.

That is, P(ϕ) means:
∃τ ∈ system traces, τ |= ♦ϕ
Satisfies usual desiderata:

1 Obligatory → should be regarded as permitted.
2 Forbidden → should be regarded as not permitted.
3 Explicitly permitted → should be regarded as not forbidden.
4 Explicitly permitted → should not be regarded as obligatory.

Even with conditional permission, which seems hard according
to the literature.

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 14

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions
Forbidden reparations
Impossible permissions
Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions
Forbidden reparations
Impossible permissions
Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions

Forbidden reparations
Impossible permissions
Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions
Forbidden reparations

Impossible permissions
Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions
Forbidden reparations
Impossible permissions

Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Verification

Background theory is translated into automata.

Formulae are combined in specific ways so the model checker
can detect:

Explicit contradictions
Forbidden reparations
Impossible permissions
Etc

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 15

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)

Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)

Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators

Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks

Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Summing up...

Software specs and regulations seem to be different, but not
so much!

It’s possible to use existing model checking tools.

We devised FL: a wrapper for LTL, supporting

Background theory (translates into automata)
Normative propositions (translate into LTL formulae)
Deontic operators
Consistency checks
Allows to state complex properties

Permissions interpreted in a novel way.

Questions?

Thanks for not being in the Beatles Museum right now!

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 16

Bonus Track

Encoding O(♦AcademicYearTakeExam)

Background theory
actions YearBegins, YearEnds
interval AcademicYear defined by actions YearBegins-YearEnds

Automata has inAcademicYear boolean variable. Turns on
with YearBegins and off with YearEnds. Those occurr
non-deterministically.

♦AcademicYearTakeExam =
YearBegins → (inAcademicYear U TakeExam)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 17

Bonus Track

Encoding O(♦AcademicYearTakeExam)
Background theory
actions YearBegins, YearEnds
interval AcademicYear defined by actions YearBegins-YearEnds

Automata has inAcademicYear boolean variable. Turns on
with YearBegins and off with YearEnds. Those occurr
non-deterministically.

♦AcademicYearTakeExam =
YearBegins → (inAcademicYear U TakeExam)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 17

Bonus Track

Encoding O(♦AcademicYearTakeExam)
Background theory
actions YearBegins, YearEnds
interval AcademicYear defined by actions YearBegins-YearEnds

Automata has inAcademicYear boolean variable. Turns on
with YearBegins and off with YearEnds. Those occurr
non-deterministically.

♦AcademicYearTakeExam =
YearBegins → (inAcademicYear U TakeExam)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 17

Bonus Track

Encoding O(♦AcademicYearTakeExam)
Background theory
actions YearBegins, YearEnds
interval AcademicYear defined by actions YearBegins-YearEnds

Automata has inAcademicYear boolean variable. Turns on
with YearBegins and off with YearEnds. Those occurr
non-deterministically.

♦AcademicYearTakeExam =
YearBegins → (inAcademicYear U TakeExam)

Fernando Schapachnik, FormaLex Lab Model Checking Legal Documents 17

